International Journal Of Engineering Research AND Industrial Applications

(IJERIA)

Distance Regular Graphs: Structures of Harmony and Symmetry
 K Padmaja ${ }^{1}$
 ${ }^{1}$ (Department of Mathematics, Government Engineering College, Thrissur, India)

Abstract

: In graph theory, distance metrics are essential because they shed light on the structural features and attributes of graphs. An overview of different distance measurements and their uses in graph theory is given in this survey work. Distance measures are categorised into three types: distance-based parameters, eccentricity-based distances, and shortest path distances. We explore classical and modern innovations in distance measures, discussing their theoretical basis, computational characteristics, and practical applications. We also identify key paths for future study and unresolved issues in this area.

Key Word: Distance-regular Graph.

I. Introduction

A basic foundation for comprehending the linkages and connectedness found in a variety of systems, from chemical structures to social networks, is provided by graph theory. It gives a basic mathematical foundation for representing and examining relationships between items. Distance is an important concept in this domain since it indicates the connectedness or length of a node. Distance regular graphs are one of the most important ideas in graph theory because of its amazing symmetry and algebraic qualities. We go into the details of distance regular graphs in this article, looking at their definitions, characteristics, and applications.

In graph theory, "distance" usually refers to the length of the shortest path between two nodes. It is frequently expressed as the number of edges crossed or the weights attached to those edges. Graph-theoretic techniques and applications in general are based on the notion of distance. The least number of edges or total weight required to get from one node to another is known as the shortest path between two nodes. To calculate shortest paths quickly, traditional methods like Floyd-Warshall and Dijkstra's are used. The greatest distance that can exist between two nodes in a network is its diameter. It offers information about the graph's general distribution and connection. The greatest distance a node can have from any other node in the graph is its eccentricity. A graph's radius is the least eccentricity of all its nodes. To efficiently calculate the distances between every pair of nodes in a graph, techniques such as matrix multiplication-based methods and Johnson's algorithm are employed. For all basic definitions, we refer to [1].

II. Definitions and Basic Properties

Distance regular graph was defined by Brouwer et.al in 1989 [2]. A graph with its vertices structured so that the distances between them show regularity is called a distance regular graph. Formally, a graph G with vertex set V is said to be distance regular if for each pair of vertices u and v at distance d, the number of common neighbours of u and v depends only on the distance d and not on the particular choice of u and v. It is common to refer to this characteristic as the distance regularity condition. Mathematically, for vertices u and v at distance d, there are constants p_{i}, q_{i}, sometimes known as intersection numbers, such that, for i, a non-negative integer, the number of common neighbours of u and v is p_{i} if $d=i$ and q_{i} if $d=i+1$.

Figure 1: A distance regular graph

Distance regular graphs are studied by various authors [5,6,7] and they are found to possess several remarkable properties:

1. Symmetry: The adjacency matrix and the structure of these graphs both show symmetry. Often, this symmetry results in beautiful algebraic characteristics.
2. Highly Regular: Distance regular graphs frequently have very symmetric vertex degrees in addition to their regular distance patterns. The eigenvalues and eigenvectors of their adjacency matrices exhibit this characteristic.
3. Optimal Expanders: Having outstanding connectivity qualities, a large number of distance regular graphs are recognised as optimal expanders. This feature is especially helpful for designing and analysing networks.

III.Distance in Special Graphs

a. Trees: Distance properties in trees are well-studied, with algorithms optimized for efficient computation of distances and related metrics.
b. Planar Graphs: Distance properties in planar graphs have implications on embedding and routing in geometric spaces.
c. Weighted Graphs: Distance computation in weighted graphs involves additional complexities, with algorithms designed to handle varying edge weights efficiently.

IV. Applications

Applications of distance metrics in graph theory can be found in many different fields:
a. Network analysis: Distance metrics in social networks provide insight into the degree of influence or proximity between people.
b. Transportation Networks: In logistics, public transportation, and road networks, shortest path algorithms help with route planning and optimization.
c. Communication Networks: Metrics of distance are essential for assessing the dependability and effectiveness of communication networks.
d. molecule Chemistry: Distance metrics are used to analyse molecule conformation and characteristics through graph representations of molecular structures.
e. Computer Networks: The robustness and connectedness of computer networks can be examined with the help of distance metrics.

Applications of distance regular graphs can be found in quantum information theory, computer science, design theory, and coding theory. Among the noteworthy instances are:

1. Hamming Graphs: The vertices of the d-dimensional hypercube correspond to the vertices of the Hamming network $\mathrm{H}(\mathrm{d}, \mathrm{q})$, which is a distance regular graph [3]. Two vertices are nearby
if and only if they differ in precisely one coordinate. Cryptography and coding theory make heavy use of these graphs.

Figure 2: Hamming graph
2. Johnson Graphs: A distance regular graph called the Johnson graph $J(n, k)$ has vertices that represent k-subsets of a nn-set. Two vertices are nearby if and only if the respective subsets of those vertices cross in exactly k-1 elements. Johnson graphs are used in error-correcting codes and combinatorial designs due to their unique structures and features.

Figure 2: Johnson graph J(4,2)
3. Intersection Arrays: Intersection arrays offer a succinct means of describing the intersection numbers and are frequently used to illustrate distance regular graphs. Comprehending these arrays makes it easier to analyse and categorise distance regular graphs.
4. Algebraic Combinatorics [4]: The analysis of the properties and constructions of distance regular graphs involves the application of methods from algebraic geometry, group theory, and representation theory.

V. Obstacles and Prospects for the Future

a) Scalability: Scalable distance computation algorithms become more and more important as graphs get bigger and more complicated.
b) Dynamic Graphs: Adding or removing edges or nodes dynamically creates new difficulties for distance algorithms when applied to these graphs.
c) Multi-dimensional Metrics: By investigating distance metrics other than the conventional Euclidean or shortest path distances, more profound understandings of graph topologies can be gained.
d) Machine Learning Applications: Graph-based learning and pattern identification are made possible by the integration of distance measurements with machine learning methods

VI. Conclusion

In summary, distance metrics are essential to graph theory because they make it easier to analyse the structure, efficiency, and connectivity of graphs. Although current research has established a strong basis, new applications and persistent obstacles will continue to spur innovation in this area. Through the comprehension and development of distance notions in graph theory, scholars can uncover novel perspectives and applications in a variety of fields.

References

1. F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Longman, 1990.
2. Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
3. Bang, S., Van Dam, E.R., Koolen, J.H., Spectral characterization of the Hamming graphs, Linear Algebra Appl. 429 (2008), 2678-2686
4. Bannai, E., Bannai, E., A survey on spherical designs and algebraic combinatorics on spheres, European J. Combin. 30 (2009), 1392-1425
5. Bannai, E., Ito, T., On distance-regular graphs with fixed valency, IV, European J.Combin. 10 (1989), 137-148.
6. Bendito, E., Carmona, A., Encinas, A.M., Mitjana, M., Distance-regular graphs having the M property, Linear Multilinear Algebra 60 (2012), 225-240.
7. Edwin R. van Dam, Jack H. Koolen, Hajime, Distance-regular graphs, Electronic J. Combin.(2016), \#DS22
